homuncul

Капилляры как сенсоры активности нейронов

В мозге открыли еще одну сеть передачи электрических сигналов. Ее образуют капилляры, они реагируют на активность нервных клеток, пуская гиперполяризационную волну “вверх” в кровеносные сосуды-артериолы. Сигнал вызывает их расширение, и кровоток в капиллярном русле растет. Нейроны получают кислород.


Вопрос о том, как нейрон регулирует доставку крови, дискутируется в науке давно. Один микролитр коры содержит почти метр общей длины сосудов, где преобладают капилляры. Количество капиллярных эндотелиальных клеток в мозге соответствует количеству нервных, а любой капилляр проходит менее чем в 15 мкм от ближайшего тела нейрона. Такое устройство анатомии подсказало ученым идею, что сигнал от капилляра к артериоле был бы эффективным способом направить поток крови в зону микроциркуляции в ответ на нейронную активность.


Схема одного из экспериментов. Через открытый череп к капиллярам мозга мыши пипеткой вводили ионы калия
и двух-фотонным лазерным микроскопом отслеживали изменения кровотока в сосудах

Чтобы проверить гипотезу, авторы статьи в Nature Neuroscience провели сложные эксперименты как на изолированных сосудах, так и на живом мозге анестезированных мышей. Они показали, что у капилляров есть калиевые рецепторы; порция ионов калия вызывает быстрое распространение гиперполяризации вверх от капилляра к артериоле (авторы назвали это ‘обратным потенциалом действия’), стенки сосуда расширяются и кровь поступает в зону, где возникли ионы калия.

Поскольку ионы K+ высвобождаются при каждом потенциале действия нейрона, такой механизм увязывает кровообращение в мозге с ритмом активности нервных клеток, а капилляры играют главную роль в надежном снабжении их кровью. Авторы даже приходят к выводу, что эндотелиальные клетки капилляров больше напоминают синцитий -- тип ткани с неполным разграничением клеток -- который сопряжен с гладкой мускулатурой артериол.

Гипотеза, конечно, требует дальнейших исследований. Статья предъявляет данные в ее пользу, трактуя капилляры в виде обширной сенсорной сети, которая контролирует динамику кровообращения в мозге. Но авторы допускают, что подобная схема действует и в других электрически активных тканях, таких как сердечные и скелетные мышцы.

Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow | Nature Neuroscience | doi:10.1038/nn.4533

Recent Posts from This Journal

  • Зачем оптогенетике вода?

    Ну, все уже знают про оптогенетику -- вы светите в мозг какой-нибудь крысе, и у нее возбуждаются нейроны. Не все, а лишь те, что реагируют на свет.…

  • Зачем одной клетке связь со всем мозгом?

    Гигантский нейрон, опоясывающий отростками весь мозг мыши. Его открыли недавно, в Allen Institute for Brain Science, применив новую технику…

  • Цените аномалии. Случай CG

    Вот необъяснимая, на первый взгляд, история. У женщины 43 лет, назовем её CG, случилось кровоизлияние в мозг. Сильная головная боль, тошнота, потеря…